HALS-based NMF with flexible constraints for hyperspectral unmixing

نویسندگان

  • Weishi Chen
  • Mireille Guillaume
چکیده

In this article, the hyperspectral unmixing problem is solved with the nonnegative matrix factorization (NMF) algorithm. The regularized criterion is minimized with a hierarchical alternating least squares (HALS) scheme. Under the HALS framework, four constraints are introduced to improve the unmixing accuracy, including the sum-to-unity constraint, the constraints for minimum spectral dispersion and maximum spatial dispersion, and the minimum volume constraint. The derived algorithm is called F-NMF, for NMF with flexible constraints. We experimentally compare F-NMF with different constraints and combined ones. We test the sensitivity and robustness of F-NMF to many parameters such as the purity level of endmembers, the number of endmembers and pixels, the SNR, the sparsity level of abundances, and the overestimation of endmembers. The proposed algorithm improves the results estimated by vertex component analysis. A comparative analysis on real data is included. The unmixing results given by a geometrical method, the simplex identification via split augmented Lagrangian and the F-NMF algorithms with combined constraints are compared, which shows the relative stability of F-NMF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

جداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA

Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...

متن کامل

Nonnegative Matrix Factorization With Data-Guided Constraints For Hyperspectral Unmixing

Abstract: Hyperspectral unmixing aims to estimate a set of endmembers and corresponding abundances in pixels. Nonnegative matrix factorization (NMF) and its extensions with various constraints have been widely applied to hyperspectral unmixing. L1/2 and L2 regularizers can be added to NMF to enforce sparseness and evenness, respectively. In practice, a region in a hyperspectral image may posses...

متن کامل

Distributed Unmixing of Hyperspectral Data With Sparsity Constraint

Spectral unmixing (SU) is a data processing problem in hyperspectral remote sensing. The significant challenge in the SU problem is how to identify endmembers and their weights, accurately. For estimation of signature and fractional abundance matrices in a blind problem, nonnegative matrix factorization (NMF) and its developments are used widely in the SU problem. One of the constraints which w...

متن کامل

Hyperspectral Unmixing via Double Abundance Characteristics Constraints Based NMF

Abstract: Hyperspectral unmixing aims to obtain the hidden constituent materials and the corresponding fractional abundances from mixed pixels, and is an important technique for hyperspectral image (HSI) analysis. In this paper, two characteristics of the abundance variables, namely, the local spatial structural feature and the statistical distribution, are incorporated into nonnegative matrix ...

متن کامل

A parallel unmixing algorithm for hyperspectral images

We present a new algorithm for feature extraction in hyperspectral images based on source separation and parallel computing. In source separation, given a linear mixture of sources, the goal is to recover the components by producing an unmixing matrix. In hyperspectral imagery, the mixing transform and the separated components can be associated with endmembers and their abundances. Source separ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012